This past winter, I was fortunate to have the opportunity to work for Trail of Bits as a graduate student intern under the supervision of Peter Goodman and Artem Dinaburg. During my internship, I developed Dr. Disassembler, a Datalog-driven framework for transparent and mutable binary disassembly. Though this project is ongoing, this […]
Iterator invalidation is a common and subtle class of C++ bugs that often leads to exploitable vulnerabilities. During my Trail of Bits internship this summer, I developed Itergator, a set of CodeQL classes and queries for analyzing and discovering iterator invalidation. Results are easily interpretable by an auditor, […]
The Trail of Bits Assurance practice has received an influx of Go projects, following the success of our Kubernetes assessment this summer. As a result, we’ve been adapting for Go projects some of the security assessment techniques and tactics we’ve used with other compiled languages. We started by understanding the design of the language, identifying […]
A lot of companies are working on Ethereum smart contracts, yet writing secure contracts remains a difficult task. You still have to avoid common pitfalls, compiler issues, and constantly check your code for recently discovered risks. A recurrent source of vulnerabilities comes from the early state of the programming languages available. Most developers are using […]
We open-sourced a set of static analysis tools, KRFAnalysis, that analyze and triage output from our system call (syscall) fault injection tool KRF. Now you can easily figure out where and why, KRF crashes your programs. During my summer internship at Trail of Bits, I worked on KRF, […]
A denial-of-service (DoS) vulnerability, dubbed ‘Gridlock,’ was publicly reported on July 1st in one of Edgeware’s smart contracts deployed on Ethereum. As much as $900 million worth of Ether may have been processed by this contract. Edgeware has since acknowledged and fixed the “fatal bug.” When we heard about Gridlock, we ran Slither on the […]
With the release of C++14, the standards committee strengthened one of the coolest modern features of C++: constexpr. Now, C++ developers can write constant expressions and force their evaluation at compile-time, rather than at every invocation by users. This results in faster execution, smaller executables and, surprisingly, safer code. Undefined behavior has been the source […]
Each year, Trail of Bits runs a month-long winter internship aka “winternship” program. This year we were happy to host 4 winterns who contributed to 3 projects. This project comes from Carson Harmon, a new graduate from Purdue interested in compilers and systems engineering, and a new full-time member of our research practice. I set […]
Three weeks ago, we presented our work on Slither at WETSEB, an ICSE workshop. ICSE is a top-tier academic conference, focused on software engineering. This edition of the event went very well. The organizers do their best to attract and engage industrials to the discussions. The conference had many talks in parallel. We wish we […]
Consider our modular trainings. They can be organized to suit your company’s needs. You choose the number of skills and days to spend honing them.
We have published an academic paper on Slither, our static analysis framework for smart contracts, in the International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), colocated with ICSE. Our paper shows that Slither’s bug detection outperforms other static analysis tools for finding issues in smart contracts in terms of speed, robustness, and […]
Slither is the first open-source static analysis framework for Solidity. Slither is fast and precise; it can find real vulnerabilities in a few seconds without user intervention. It is highly customizable and provides a set of APIs to inspect and analyze Solidity code easily. We use it in all of our security reviews. Now you […]
Plenty of static analyzers can perform vulnerability discovery on source code, but what if you only have the binary? How can we model a vulnerability and then check a binary to see if it is vulnerable? The short answer: use Binary Ninja’s MLIL and SSA form. Together, they make it easy to build and solve a system of equations with a theorem prover that takes binaries and turns them, alchemy-like, into vulnerabilities!
Two years ago, when we began taking on blockchain security engagements, there were no tools engineered for the work. No static analyzers, fuzzers, or reverse engineering tools for Ethereum. So, we invested significant time and expertise to create what we needed, adapt what we already had, and refine the work continuously over dozens of audits. […]
This year’s DEF CON CTF used a unique hardware architecture, cLEMENCy, and only released a specification and reference tooling for it 24 hours before the final event began. cLEMENCy was purposefully designed to break existing tools and make writing new ones harder. This presented a formidable challenge given the timeboxed competition occurs over a single […]