Publications

Evaluating Solidity support in AI coding assistants

AI-enabled code assistants (like GitHub’s Copilot, Continue.dev, and Tabby) are making software development faster and more productive. Unfortunately, these tools are often bad at Solidity. So we decided to improve them! To make it easier to write, edit, and understand Solidity with AI-enabled tools, we have: Added support for Solidity into Tabby […]

Use our suite of eBPF libraries

Trail of Bits has developed a suite of open-source libraries designed to streamline the creation and deployment of eBPF applications. These libraries facilitate efficient process and network event monitoring, function tracing, kernel debug symbol parsing, and eBPF code generation. Previously, deploying portable, dependency-free eBPF applications posed significant challenges due to Linux kernel […]

64 Bits ought to be enough for anybody!

How quickly can we use brute force to guess a 64-bit number? The short answer is, it all depends on what resources are available. So we’re going to examine this problem starting with the most naive approach and then expand to other techniques involving parallelization. We’ll discuss parallelization at the CPU level with SIMD instructions, […]

Fuzzing In The Year 2000

It is time for the second installment of our efforts to reproduce original fuzzing research on modern systems. If you haven’t yet, please read the first part. This time we tackle fuzzing on Windows by reproducing the results of “An Empirical Study of the Robustness of Windows NT Applications Using Random Testing” (aka ‘the NT […]

Fuzzing Like It’s 1989

With 2019 a day away, let’s reflect on the past to see how we can improve. Yes, let’s take a long look back 30 years and reflect on the original fuzzing paper, An Empirical Study of the Reliability of UNIX Utilities, and its 1995 follow-up, Fuzz Revisited, by Barton P. Miller. In this blog post, […]

Protecting Software Against Exploitation with DARPA’s CFAR

Today, we’re going to talk about a hard problem that we are working on as part of DARPA’s Cyber Fault-Tolerant Attack Recovery (CFAR) program: automatically protecting software from 0-day exploits, memory corruption, and many currently undiscovered bugs. You might be thinking: “Why bother? Can’t I just compile my code with exploit mitigations like stack guard, […]

The Challenges of Deploying Security Mitigations

This blog has promoted control flow integrity (CFI) as a game changing security mitigation and encouraged its use. We wanted to take our own security advice and start securing software we use. To that end, we decided to apply CFI to facebook’s osquery, a cross-platform codebase with which we are deeply familiar. Using osquery, we […]

Let’s talk about CFI: Microsoft Edition

We’re back with our promised second installment discussing control flow integrity. This time, we will talk about Microsoft’s implementation of control flow integrity. As a reminder, control flow integrity, or CFI, is an exploit mitigation technique that prevents bugs from turning into exploits. For a more detailed explanation, please read the first post in this […]

Let’s talk about CFI: clang edition

Our previous blog posts often mentioned control flow integrity, or CFI, but we have never explained what CFI is, how to use it, or why you should care. It’s time to remedy the situation! In this blog post, we’ll explain, at a high level, what CFI is, what it does, what it doesn’t do, and […]

Windows network security now easier with osquery

Today, Facebook announced the successful completion of our work: osquery for Windows. “Today, we’re excited to announce the availability of an osquery developer kit for Windows so security teams can build customized solutions for their Windows networks… This port of osquery to Windows gives you the ability to unify endpoint defense and participate in an […]

How We Fared in the Cyber Grand Challenge

The Cyber Grand Challenge qualifying event was held on June 3rd, at exactly noon Eastern time. At that instant, our Cyber Reasoning System (CRS) was given 131 purposely built insecure programs. During the following 24 hour period, our CRS was able to identify vulnerabilities in 65 of those programs and rewrite 94 of them to […]

McSema is Officially Open Source!

We are proud to announce that McSema is now open source! McSema is a framework for analyzing and transforming machine-code programs to LLVM bitcode. It supports translation of x86 machine code, including integer, floating point, and SSE instructions. We previously covered some features of McSema in an earlier blog post and in our talk at ReCON 2014. Our […]

A Preview of McSema

On June 28th Artem Dinaburg and Andrew Ruef will be speaking at REcon 2014 about a project named McSema. McSema is a framework for translating x86 binaries into LLVM bitcode. This translation is the opposite of what happens inside a compiler. A compiler translates LLVM bitcode to x86 machine code. McSema translates x86 machine code into LLVM […]